
DERIVING SECURITY REQUIREMENTS FOR
APPLICATIONS ON TRUSTED SYSTEMS

Raymond Spencer

Secure Computing Corporation

2675 Long Lake Road

Roseville, Minnesota 55113-2536

spencer@sctc.com

Abstract

Security policies for computer systems must be able to expand along with the

system. When a new application is added to a system, the security policy can be

expanded either by applying the existing policy to the new application or by extending

the policy to consider services not available in the existing system.

This paper describes the way in which the initial security policy for one secure

computer system, the Secure Network Server (SNS), has been applied to new applica-

tions as they are added to the system. The techniques described here give a rigorous

approach to determining the application requirements while eliminating the need of

reanalyzing the entire system as each application is added. The approach can also

identify security requirements early enough in the design process that the design can

often be easily altered to minimize the requirements on the application.

The key element of this technique is the development of a security analysis checklist

which lists the requirements which an application must satisfy based upon the privileges

the application is granted to certain objects in the system.1

Keywords: Security policies, security requirements, trusted applications, Secure

Network Server.

1 Introduction

Traditional assurance of trusted computing systems has focused on the operating system.

However, trusted systems generally include trusted applications whose operation could po-

tentially undermine the security of the entire system. Therefore these applications also need

to be assured with the same care as the operating system itself, and moreover, the security
requirements against which the application is assured must be consistent with the security

requirements on the overall system.
Unfortunately, software assurance processes often begin with the assumption that the

requirements have been identi�ed. This paper attempts to address this gap by describing

1This work was supported in part by the Maryland Procurement O�ce, contract MDA904-93-C-C034.



a process for deriving security requirements for trusted applications from the security re-

quirements on the overall system in a manner that ensures that the derived requirements

are su�cient to satisfy the system security policy. The process has been successfully used

for applications hosted on the Secure Network Server (SNS), a trusted system developed for

the Department of Defense MISSI program.

A brief description of the SNS and of the system security policy which provided the main

input to the process are described in Section 2. Section 3 describes the �rst step in the

process, which is to re�ne the requirements of the system policy into particular classes and

from this create a security analysis checklist. This step is performed once for the system as

a whole. Section 4 describes how the checklist is used for each application to generate the

security requirements on the application.

2 Background

This section describes the initial SNS Security Policy as it existed prior to the work described
in this paper and the basic architecture of the SNS.

2.1 The Initial SNS Security Policy

The SNS is based upon the LOCK (LOgical Coprocessing Kernel) prototype developed in
the late 80's and early 90's, and inherited its initial security policy from LOCK. This initial
security policy consisted of a collection of high level security objectives and a much larger
collection of lower level requirements.

The security policy objectives essentially de�ned security in the system as preserving

con�dentiality and integrity of data. The objectives were quite comprehensive and un-
controversial, statements such as \A user shall not be able to use the system to observe
information which the user is not permitted to observe", where \permitted to observe" is
de�ned external to the system, such as through a clearance level.

The lower layer of the policy consisted of a re�nement of these objectives into a collec-

tion of approximately 50 requirements on the system, the system's users, and the physical

environment in which the system resides. Informal and formal analysis was performed to
provide con�dence that these requirements are su�cient to satisfy the system's objectives.

This security policy was written to be largely independent of a particular implementation,

in order to improve portability. And this was su�cient for describing the requirements on

the LOCK prototype, which was not used to host any complicated privileged applications.

However, as applications were developed for the SNS, it was recognized due to the portability

goal, the statement of the requirements did not adequately distinguish the requirements on
the platform itself from the requirements on the applications residing on the platform.

So the techniques which are described in this paper grew out of a desire to start with
an existing policy which had been analyzed and accepted and use that policy to rigorously

derive requirements on speci�c applications added to the system.



SNS Operating System
Security Database

App 1
Objects

App 1
Subjects

App 2
Objects

App 2
Subjects

App 3
Subject

App 3
Objects

Figure 1: SNS Separation of Applications

2.2 SNS Architecture

In order to distinguish requirements between the operating system and applications, a basic
understanding of the SNS architecture and the way in which it is used to provide a logical
separation between applications is necessary.

The SNS operating system provides for the basic management of subjects (processes) and
objects. All subjects and objects are labeled with a security context within the operating
system. The security context of a subject includes a user name, sensitivity level, and type
enforcement domain. The security context of an object includes a sensitivity level and type
label.

All accesses between subjects and objects (including other subjects) are mediated by the
operating system according to the access rights recorded in the system's security databases.
The databases are composed of (subject security context, object security context) pairs and
the sets of access rights granted to each pair.

An application includes one or more subjects and some collection of objects. The applica-

tion developer must de�ne the security contexts of all of the subjects and objects, along with
the privileges to be granted with respect to these security contexts in the security databases.

The labeling of applications, in particular the type enforcement labels, allow for a strict
separation between applications. This separation is essential to allow us to argue that new

applications cannot interfere with existing applications. Without it, each new application

would require re-analyzing the entire system.

3 Creation of the Security Analysis Checklist

This section describes the process of creating the security analysis checklists. While this

process can become complex, it must only be performed once. And the cost of this up front
analysis is more than made up for by the resulting simplicity in deriving security requirements

on particular applications.
The process is described in two steps, the re�nement of the initial security requirements

and the actual construction of the checklists from the re�ned requirements.



3.1 Re�nement of the Initial Security Requirements

This section describes the way in which requirements on the system are re�ned into re-

quirements on the operating system and requirements on applications, with the application

requirements described in terms of the privileges granted to application subjects and the

access restrictions on application objects.

The �rst step in this process is to identify the speci�c mechanisms by which the operating

system controls accesses between subjects and objects. All of the security requirements are

related to some control mechanism in the operating system, since otherwise it would not be

possible to host untrusted applications on the system.

On the SNS, the basic controls provided by the operating system cover reading, writing

and executing objects, and creating, destroying and signaling subjects. Security decisions at

the control points are made based upon Bell-LaPadula rules and type enforcement.

Once all of the operating system control mechanisms have been identi�ed, each system

requirement is now considered, to identify its relation to the control mechanisms. The

requirements are categorized according to the following classes:

Security Database Requirements These requirements describe the proper con�guration
of the security databases used to make decisions at each control point in the OS. Each
new trusted application will typically require additional entries in the databases, and
therefore will add new Security Database Requirements.

OS Control Requirements These requirements directly describe a control mechanism
provided by the operating system, and are met entirely by the operating system inde-
pendent of any applications.

OS Functional Requirements These requirements are met entirely by the operating sys-
tem, though with no speci�c relation to a control mechanism. Examples include re-

quirements on labeling and auditing.

Privileged Application Requirements These requirements describe behavior of subjects
with some particular privilege, and are therefore met entirely by the application.

User Requirements These requirements must be satis�ed by the users of the system.
However, since di�erent applications may place di�erent requirements on a user, these

requirements may need to be instantiated for each application.

While ideally all requirements could be identi�ed with exactly one of these classes, we

found that many requirements were actually mixed requirements that spanned more than one

class. The purpose of the requirements re�nement is to take each of the mixed requirements
and re�ne it into requirements which do �t into one of the classes.

The process of re�ning the requirements is very speci�c to each requirement. To illustrate,

we present a few examples.



3.1.1 Examples

Data Downgrading Requirements Two of the system requirements concern downward

ow of information within the system:

DG1 Unless a subject is privileged to downgrade information, the subject cannot cause

information to ow downward in level.

DG2 Any subject with a domain which is privileged to downgrade information only down-

grades information which is appropriate for the new level.

DG1 is a requirement entirely on the operating system, however, it still needs to be

re�ned since it actually spans two categories. It identi�es a requirement on the security

databases and a requirement for a control over the downward ow of information. The

re�ned requirements are:

DG1a (Security Database Requirement) The security database shall contain a list of subject
domains which are privileged to downgrade information.

DG1b (OS Control Requirement) Unless the domain of a subject is in the list of domains

privileged to downgrade information, the subject cannot cause information to ow
downward in level.

DG2 requires no re�nement since it falls into the class of Privileged Application Requirements.2

Data Integrity Requirements The integrity of data in some objects is necessary for the

security objectives of the system to be met. Such objects are referred to as critical objects.
The following four requirements ensure that the contents of critical objects always satisfy
their integrity property:

INT1 Unless a subject is privileged to modify a critical object, the subject cannot change
the contents of the object.

INT2 Any subject with a domain which is privileged to modify a critical object modi�es
the object so that the contents of the object satisfy their integrity property, as long as
the subject receives \correct" user input.

INT3 Any user providing input to a subject in a domain which is privileged to modify a

critical object provides correct inputs to the system.

INT4 When a subject requires user input to modify a critical object, the subject operates

with a trusted path between it and the user.

INT1 is similar to DG1 and can similarly be re�ned. However, its re�nement leads to

two Security Database Requirements:

2This is not to say that DG2 shouldn't ever be re�ned further. Many of the requirements on applications

are likely to be re�ned further, though in application speci�c ways.



INT1a (Security Database Requirement) The security database shall contain a list of object

types which include critical objects.

INT1b (Security Database Requirement) For each critical object type, the security database

shall contain a list of subject domains which are privileged to modify objects of that

type.

INT1c (OS Control Requirement) Unless the domain of a subject is in the list of domains

privileged to modify a type of a critical object, the subject cannot change the contents

of the object.

INT2, like DG2, is a Privileged Application Requirement. However, to apply INT2

to a particular application, the de�nition of \correct inputs" must be determined for the

application.

INT3 appears at �rst glance to be entirely a user requirement. However, if it were purely

a user requirement, then all users would need to know the de�nition of correct inputs for each
application, which is clearly not desirable. In reality, this requirement is really a combination
of the following requirements:

INT3a (OS Security Database Requirement) For each user of the system, the security
database shall record a list of subject domains for which the user is authorized.

INT3b (OS Control Requirement) The OS shall only permit subject creation if the user of
the new subject is one of the authorized users for the subject's domain.

INT3c (User Requirement) Any user authorized to execute a subject shall provide correct
inputs to the subject.

When a new application is added, INT3a requires the identi�cation of the authorized
users of each domain in the application. INT3c requires instantiation for each application

because of the need to de�ne correct inputs.
INT4 bridges the gap between the user providing correct inputs and the subject receiving

correct inputs. It is also a mixed requirement which must be re�ned, though we do not re�ne
it here.

3.2 Compilation of the Checklist

The security analysis checklist actually consists of two checklists, one for objects and one for

subjects.

The object checklist is simply a list of all of the security properties which a particular

object can have, and the related Security Database Requirements. For instance, for objects

with integrity properties the associated requirements are INT1a and INT1b.
Integrity properties are the most common security properties of objects. Another example

of a security property of objects is a con�dentiality property not exclusively related to Bell-

LaPadula, such as a restriction on disclosure of cryptographic keys.



The subject checklist is only slightly more complicated. It is a list of all of the privileges

which a subject can have and all of the associated requirements. In some cases, the instanti-

ation of a requirement for a particular application requires additional information also noted

in the list.

For instance, the requirements associated with the privilege to modify a critical object

include requirements INT2 and INT3c. To instantiate these requirements for a particular

application also requires the de�nition of correct inputs.

Similarly, the requirements associated with the privilege to downgrade information are

DG1a and DG2, and no additional information is required to instantiate these requirements.

4 Use of the Security Analysis Checklist

Once the security analysis checklist was created, it is quite easy to use with a particular
application. First, the objects and subjects are identi�ed, and the relationships between

them established.
The object checklist is �lled out �rst, since this is necessary to determine whether some

of the accesses required by the application subjects are actually privileged operations. Then
the subject checklist is �lled out, including all of the information necessary to instantiate
each requirement which is checked o�.

Finally, the actual security requirements on the application are generated. Even with the
de�nition of terms like \correct inputs", the creation of the security requirements is quite
straightforward and we have easily written all of the application requirements using text
processing macros.

Not only is the process of creating the requirements from the checklists quite easy, it

can also be done at any point in the design process. While the use of the checklist requires
identi�cation of subjects and objects, it is also e�ective when the subjects and objects have
only been abstractly de�ned.

In fact, we have had quite a bit of success reducing the security requirements on an
application by consulting the checklist early in the design process, while the design can still
be changed without schedule impact.

Of course, even if the analysis is performed on a preliminary design, the application must

ultimately be reanalyzed once the interrelationships between the subjects and objects have
stabilized. But since the analysis is so straightforward, the advantage of performing the
analysis early in the design process more than outweighs the extra e�ort taken to �ll out the

checklist more than once.

Note �nally that creating this list of security requirements is often not the last step
in re�ning the security requirements for an application. The checklists provide a way to

rigorously determine, from the overall system objectives, the requirements which a particular
application must satisfy. However, these requirements are sometimes themselves re�ned

further in order to better represent that particular concerns of an application.

Note also that the security requirements generated by this process are not of interest
only in the assurance analysis of the system. They are occasionally incorporated into other



documents as well. The most important example of this are the user requirements, which

must be incorporated into training materials and manuals for the users of an application.

5 Conclusions

We have presented a process for rigorously deriving application security requirements for

applications on a trusted computing system. The process is straightforward to apply and

ensures that the requirements are su�cient to satisfy the overall system security policy.

In addition to generating security requirements which provide the starting point for

assurance analysis of the application, the process can be used in the preliminary design

stages to guide the application towards a design which minimizes the security requirements.

The output of the process also includes information of value in the administration and use

of the system, in particular by providing a starting point for describing the requirements on
users of the application.

The process relies heavily on the ability of the operating system to isolate applications
from each other. While it can successfully be used for a new application having some
interaction with an existing application, this does require some re-analysis of the existing
application. For most applications on the SNS, this has not been an obstacle.

The process also does not address requirements that arise from security objectives of the

application itself. The experience on SNS has been that this is not a common occurrence,
but when it does happen the application security objectives must be re�ned into additional
security requirements on the application.

References

[1] W.E. Boebert and R.Y. Kain. A practical alternative to hierarchical integrity policies.
In Proceedings of the 8th National Computer Security Conference, pages 18{27, October
1985.

[2] Richard C. O'Brien and Clyde Rogers. Developing applications on LOCK. In Proceedings

of the 14th National Computer Security Conference, pages 147{156, Washington DC,

October 1991.


